
RXRNAL OF COhIPUTATIONAL PHYSICS 93, 287-296 (1991)

unge- Kutta Smoother for Suppressi
Computational-Mode Instability of beapfro

AKIRA AOYAGI

Kwshu Sangyo LMwrsitl: Facult? qf Enginrering,
3-1, Matsugadai 2-chome, Higashi-ku. Fukuoka 813, Jz,qat?

AND

KANJI ABE

Received June 7, 1989; revised November 14, 1989

The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the
leapfrog scheme for time integration of the Korteweg-de Vries equation. The accuracy or
in;:cgration is compared with that by the use of the second order smoother. The Range-Kuttr.
smoother enables us to make long-time integration of the Korteweg-de Vries equation Ear
large amplitudes. Cm 1991 Academic press. inc.

1. INTRODUCTIO~~

The leapfrog scheme has extensively been used for time integration of noniinear
partial differential equations of hyperbolic type. The scheme has the merit of being
simple and free from dissipation errors. However, when we use the Ieapfrog scheme
to integrate equations including no dissipative term, such as the nonlinear convec-
tive equation or the Korteweg-de Vries (K-dV) equation, the scheme often suffers
irom some numerical instabilities [l-4].

In the previous paper [4]: we studied the nonlinear numerical instability in the
leapfrog scheme applied to the K-dV equation. It was shown that t!ie instability
comes from parametric excitation of computational modes of wave. En order to
carry out long-time integration of the K-dV equation, the previous paper proposed
the Runge-Kutta smoother to suppress the instability.

This paper shows experimentally that the Runge-Kutta smoother combined with
the leapfrog scheme by Zabusky and Kruskai [S] enables us to make iong-time
antegration of the K-dV equation for large amplitudes.

2x7
cix!I-9991’91 53.0s

Cop,nght c, L991 by Acadcrrllc Prcrr. Ioc.
*II rights OF reproduction in any lam kszrvea.

288 AOYAGI AND ABE

2. OBSERVATION OF NUMERICAL INSTABILITY

We consider the K-dV equation as in [4]:

au al4 a3u
Yg+uF+p-=o, Y 8X3 (1)

where ~1 is constant. We solve Eq. (1) under the periodic boundary condition

u(x, t) = u(x + 2, t) (2)

and the initial condition

u(x, 0) = A cos(lrx), (3)

where A is the amplitude. We adopt the leapfrog scheme by Zabusky and Kruskal
Cjl:

q+‘=qI

(4)

where I$’ = u(x = j Ax, t = n At), Ax is the spatial increment, and At is the temporal
increment. The periodic boundary condition (2) becomes

II
“:=“w’

where 2JAx= 2, and the initial condition (3) becomes

u; = A cos(7cj Ax).

1

ICnl

1 OP

I OP
0 20000 40000 ” 60000 80000 100000

‘:’ 0 1[0 7r- 20 25
7It

FIG. 1. Invariants lCzl as functions of time step n or time f for A = 0.5. 1.0, 2.5, and 5.0; /l=
dx=2,‘400; ~Af=2.5x lo-” in Eq. (4).

: 0.0222;

RUNGE-KUTTA SMOOTHhR

TABLE I

Blowup and Near-Recurrence Times

Amplitude -4 5.0 2.5 l.@ 0.5

Biowup time (nr,) 1.90 5.88 25.3 75.1

Near-recurrence time (XI,) 13.8 19.3 30.3 43.5

We make the numerical integrations based on scheme (4) fixing ;J =0.X2’.
Ax= 2,400, and n At= 2.5 x fOm~’ for A =OS, I.@ 2.5, and 5.0. The temporal
increment given above satisfies the linear stability condition (9) given later. The
accuracy of integrations is checked by observing the conservation law of the K-$4
equation (1):

Ail of the computations are made by using numbers of 16 figures {doub!e
precision)~

Figure 1 gives the values of lCzl as functions of time step iz or time t. We see from
the figure that after some time step lC21 exponentially grows without bound. The
growth rate becomes larger with the amplitude A. We define the blowup time r!, at
which /C21 exceeds A”. The numerical solution obtained by the leapfrog scheme 14)
for I > t, has no meaning. Table I gives the blowup time t, and the near-recurrence
time t, whose definition will be given later.

Figure 2 gives the magnified curve of C, in Fig. 1 for A = 1.0 and
PI = 59,900 z 60,100. The value of C2 changes its sign at each time step.

I j

59900 60000 n 50100

FIG. 2. Saw-toothed oscillation of C2 corresponding to Fig. i for .4 = 1.0, and i! = 59,900 z 60,102

290 AOYAGIAND ABE

3. PHYSICAL AND COMPUTATIONAL MODES

In order to explain the saw-toothed oscillation of C,, let us start from the linear
stability analysis of scheme (4). For rough estimation of the linear stability we
replace (u;+ r + uJ* + u,“~ i j/3 in the second term of the right-hand side of Eq. (4) by
a constant c and expand z$ in terms of the discrete Fourier coefficients Vi:

u; =
k= -J

Thus we obtain from the linear version of scheme (4)

u;+’ - 2i At ok. - 2 sin(nk Ax)
I

LIE - UE- ’ = 0,

where

2ru cok = - sin(rk Ax)[1 - cos(nk AX)].
(Ax)~

The solution of Eq. (7) has the form of Uiccexp(in6,), where

sin 8, = At ok - 2 sin(7ck Ax) . 1

(6)

(7)

(8)

The condition that ok is real or jsin ekl < 1 leads to the linear stability condition for
scheme (4). The condition lsin @,I d 1 is satisfied if

maxIok/ + max k sin(7ck Ax) <1

or

(9)

Inequality (9) is the severe stability condition for At. When inequality (9) is
satisfied, Eq. (8) has two solutions of ek. If we write one of them as Ok, the other
is 7c - ok. Then the solution of Eq. (7) is written as

u;= V,exp(idk)+ wkexp[in(n-ekj]

= V, exp (id,) + (- 1)‘z W, exp(- inel,), (lo)

where the coefficients Vk and lVk are constants independent of n. By substituting
Eq. (10) into Eq. (6), we can express UT as

Uj”=u~;+(-l)“,2$ (11)

RUNGE-KUTTA SMOOTHER 24 f, ,

where

Vz = b;I exp(QztI,), W; = Wk expj - inQ,j.

We call cJ’ as physical modes and (- l)R$’ as computational modes. W
approaches zero, physical modes converge to the physical solution and computa.~
lional modes vanish. Note that computational modes change their signs at each
time step il.

In view of the linear solution (1 l), we may decompose also solutions U; of the
nonlinear equation (4) into the physical modes UT and the computational modes
(- 1 ,y as in Eq. (11). The saw-toothed oscillation in Fig. 2 comes from the
computational modes (- 1 j%: in Eq. (11).

4. RUNGE-KUTTA SMOOTHER

The simplest way [6] to exclude the computational modes is to evaiutate
wyi “+221,;+~,“-~ from Eq. (11) as

Lli’ + i + 2uJ’ + u,” - 1 = Ll; + 1 + 2q + q ~ ’ - (-- 1)‘y\y + 1 - .&y,” + \q ~ 1) /

and approximate t;J + ’ + 20.7 + ~1;: ~ ' ZE 4~7; and IV: + ’ - 2$ + ~3; ~ ! 1: 0. Then we

obtain
0; = ,,,;+I -I- 2u; + r4; - i)$I. ;, i2)

eplacing n by YE - 1 in the above equation, we obtain
t,; -~ 1 = (21,; + y - : + q ~ 2 i/4.

We can restart the leapfrog integration based on Eq. (4) using 0,:’ and tY1 in place
of U; and $’ ~~ ’ at some time step. This replacement operation, however,‘violates the
conversation law of Cz. We call the smoother (12) as the second-order smoother.

A more accurate way to exclude the computational modes is to apply the
following Runge-Kutta smoother. By replacing tz in Eq. (11) by I: - 1, we obtain

u;-’ =$-I - (- 1,y- L, ;!3,

In order to obtain cr, $‘, cy-‘, and IV’~ ~ ’ from u’! and u” - ’ . we need two more
equations as well as Eqs. (11) and (13< For this &pose: we use the differential
equation recovered from Eq. (4):

-‘_(ujfr2u,+, +2tlj-,-ri~j+,),
2(As)’

292 AOYAGI AND ABE

where zri(t) are regarded as functions of continuous time t. We integrate Eq. (14)
using the Runge-Kutta scheme to obtain uj(t = n dt) from u,;.*+ ’ which are the leap-
frog solutions of Eq. (4). The step-size used in the Runge-Kutta scheme is At, same
as in the leapfrog scheme. Since the Runge-Kutta scheme is free from the saw-
toothed oscillation, all of UT--’ in Eq. (13) are advanced in time with no such
oscillations as the computational modes. Therefore uj(t = n AZ) integrated from
up may be expressed as

zr,(t=ndt)=L7;-(-1)“q. (15)

We have ignored the errors incurred by the use of the Runge-Kutta scheme instead
of the leapfrog scheme. The validity of Eq. (15) will be ascertained experimentally.
Then from Eqs. (11) and (15), we obtain

v; = [z47 + z4,Jt = n At)]/2,

(-l)‘%;= [u;-uj(t=nAt)]/2.

Thus we can decompose uJ.’ into the physical modes VT and the computational
modes (- l)%~. In a quite similar manner, we make time-reversing Runge-Kutta
integration of Eq. (14) to obtain uj(t= (n- 1) dt) from ~7, As in the case of
Eq. (15), ui(t= (IZ - 1) At) obtained thus may be expressed as

q(t=(n-l)At)=vi”-‘+(-l)“w:‘?

Equation (13) and the last equation give

vi --l= [ui”-‘+u,(t=(c 1) At)]/2,

(-l)n-l$-‘= [u;?-u,(t=(n- 1) At)]/2.

The schematic graph for the Runge-Kutta smoother is given in Fig. 3.

&ut+ _ - -
ll;

(WJQ- - ,-
Ui(t=(n-1)&t) A-----

P A+ .*<o”‘
- C-1 1”W;

j/Y-’ VT

i::--.
(-1 fj$-L __ -- T Uj(t=nat)

$’
_ _ --~&&

FIG. 3. Schematic graph for the Runge-Kutta smoother: u;, u;-‘, leapfrog solutions; uj(f = n At),
u,(f= (n - 1) Al), Runge-Kutta solutions.

RUNGE-KUTTA SMOOTHER

5. EFFECTS OF SMOOTHING

We substitute Eq. (11) into the right-hand side of Eq. (5) to obtain

CT = czp + Clcr

where

j=O

The C,, denotes the error of physical modes and Czc comes from computational
modes. Since in earlier time stage I$’ 1 << jt’J.‘j, the last equation becomes

Thus Clr changes its sign at each time step iz. Figure 4 gives (C2gl and /Czc/
obtained thus for A = 1.0. The Clc in Fig. 4 changes its sign at each time step as
shown in Fig. 2. Note that the saw-toothed oscillation of C,, does not appear in
ICY,,\. Also is noted in Fig. 1 that the saw-toothed oscillation of Cz. does not appear
in /C,\ when /C,,/ $ ICY,,\. The saw-toothed oscillation of lC,(appears only w
lC,,.I 2 IG,l.

Now we apply the smoother to scheme (4); that is to say. we replace U; and I$- i
by the physical modes $’ and $‘- ‘> respectively, at some time step. Figures 5 and
6 give Ci, and Czc for A = 1.0 when the second-order smoother is applied at the
time step II = 60,000. We see from the figures that the second-order smoother can-
no: exclude the computational modes completely, and the remaining computational
modes grow rapidly to blow up the integration. Figures 7 and .8 give CZp and C,,
for A = 1.0 when the Runge-Kutta smoother is applied at the time step tr = 60,000.
The Runge-Kutta smoother can exclude the computational modes almost com-

etely and enables us to make the long-time leapfrog integration if we apply the
e-Kutta smoother periodically.

e also applied the second-order and Runge-Kutta smoothers to integrations
for k = 0.5, 2.5, and 5.0 and found that the second-order smoother cannot exclude
the computational modes completely, while the Runge-Kutta smoother can exclude
them almost completely. This fact may assure the validity of Eqs. (11) and i 15)
even for ;4 = 2.5 and 5.0.

Figure 9 gives !CzPl at the near-recurrence time t, as a function of the smoothing
period. The Runge-Kutta smoother is applied at the end of each smoothing period.
We evaluate the fundamental Fourier coefficient in Eq. (6) from the leapfrog
solutions UT. The near-recurrence time rr, as been given in Table I, is the

294 AOYAGI AND ABE

10 I, -10 / ’ I I
0 20000 40000 60000 80000 100000 ”

FIG. 4. (C,,J and IC,,I as functions of time step n for A = 1.0 in Fig. 1. Note that C, is not the
physical part of the constant but the error of the constant, C2 = Czp + Clr.

1 I I I I

_ A=l.O

1 o-5 -

,,a’

-IO i
lOA I I I

0 20000 40000 ” 60000 80000 100000

FIG. 5. Time developments of IC+I and ICzcj for A = 1.0 when the second-order smoother is applied
at the time step n = 60,000.

0.0

-2.0
59900 60000 n 60100

FIG. 6. Magnified curves of C,, and Czc at the smoothing time step n = 60,000 in Fig. 5.

RUNGE-KUTTA SMOOTHER

FIG. 7. Time developments of /C,,I and ICI<1 for A = 1.0 when Zhe Runge-Kutta smcothe: is
applied at the time step)I = 60,000.

59900 60000 n 6OGlO

FIG. 8. hlagnikd curves of C:, and C,, at the smoothing time step II = 60,ooO in Fig, I

lC2PI

-iO
i0

“. 0 0. 2 0.4 0.6 0.8 i. a
smoothing period / tr

FIG. 9. /CZ,I at the near-recurrence time I, as a function of smoothing period for .J =O.S. 1.0. 2.5,
and 5.0. The smoothing period is normalized by the near-recurrence time r,.

296 AOYAGI AND ABE

TABLE II

Values of (C,I, (C,I, and (C1l at Near-Recurrence Time 1, by Using Runge-Kutta
Smoother

Amplitude A 5.0 2.5 1.0 0.5

smoothing
period/t,
(step n)

lC,l

IC,l

lC,l

0.0453 0.0648 0.331 0.471
(2,500) (5,000) (40,000) (WOO)

1.55 x lo-l2 1.98 x 10-l’ 1.32 x lo-l2 9.32 x lo-l1

3.60 x lo-’ 7.06 x 1O-6 4.05 x 10 -* 7.62 x lo-”

3.27 x lo-” 7.12 x 1om3 5.41 x 10 ms 3.25 x 1O-6

time when 1 U;ll returns to take the maximal value for the first time. The values of
t, in Table I agree with those evaluated by Abe and Satofuka [7] within the
accuracy of 5 percent. From Fig. 9 we are required to apply the Runge-Kutta
smoother more frequently as the amplitude increases. The cpu time required for
smoothing by the Runge-Kutta smoother was 3.6 ms per smoothing which was
about four times as large as that by the second-order smoother in which we used
the leapfrog scheme twice to obtain .:+I and u’.~’ from UT and UT-‘. However, the
cpu time for smoothing forms a negligible percintage of the total running time.

The K-dV equation has conservation laws

as well as C,. The values of IC1j, IC,I, and IC31 at the near-recurrence times are
given in Table II, where the Runge-Kutta smoother is applied at the end of every
smoothing period. We see that the Runge-Kutta smoother enables us to make
long-time leapfrog integration of the K-dV equation for large amplitudes as well as
small amplitudes.

REFERENCES

1. B. FORNBERG, Math. Comput. 27, 45 (1973).
2. D. M. SLOAN AND A. R. MITCHELL, J. Comput. Phys. 67, 372 (1986).
3. W. L. BRIGGS, A. C. NEWLL, AND T. SARIE. J. Comput. Phys. 51, 83 (1983).
4. A. AOYAGI AND K. ABE. J. Comnput. Phys. 83, 447 (1989).
5. N. J. ZABUSKY AND M. D. KRUSIUL, P/?ys. Rev. Lett. 15, 240 (1965).
6. N. J. ZABUSKY, private communication.
7. K. ABE AND N. SATOFUICA, Phys. Fluids 24, 1045 (1981).

